Zusammenfassung
Hintergrund: Die Transplantation von autologen Knochenmarksstammzellen in die ischämische Körperregion
kann die Gefäßneubildung, insbesondere das arterielle Kollateralwachstum, induzieren.
Wir untersuchten die Wirksamkeit und Sicherheit der Transplantation patienteneigener
Knochenmarksstamm- und Vorläuferzellen bei Patienten mit austherapierter, nicht mehr
revaskularisierbarer kritischer Extremitätenischämie mit drohender Majoramputation.
Patienten und Methoden: Nach mehrfach erfolgloser oder bei primär nicht möglicher Revaskularisation und nach
maximaler konservativer Therapie wurde bei 51 Patienten mit kritischer Extremitätenischämie
eine autologe Knochenmarkszelltransplantation (aKMT) in das ischämische Bein durchgeführt.
Bei den ersten 12 Patienten wurden die Knochenmarkszellen mit der Ficoll-Dichtegradientenmethode
isoliert (hier im Mittel transplantiert 1,1 ± 1,1 × 109 KM-Zellen), Patienten 13–51 erhielten über eine „point-of-care“, bettseitig durchgeführte
Dichtezentrifugation gewonnene Knochenmarkszellkonzentrate (3,0 ± 1,7 × 109 Zellen). Der Extremitätenerhalt gelang bei 59 % innerhalb von 6 Monaten und bei 53 %
innerhalb der Nachbeobachtung (Mittelwert: 411 ± 261 Tage, Streubreite: von 175 bis
1186 Tagen). Die Durchblutungsparameter Knöchel-Arm-Index (KAI) und transkutaner Sauerstoffdruck
(tcpO2 ) zeigten einen Anstieg bei den Patienten mit konsekutivem Extremitätenerhalt (Ausgangswert
KAI 0,33 ± 0,18, nach 6 Monaten 0,46 ± 0,15; tcpO2 12 ± 12, nach 6 Monaten 25 ± 15 mmHg). Bei den schlussendlich majoramputierten Patienten
zeigte sich keine signifikante Veränderung. Die Ansprechrate und der klinische Verlauf
waren bei beiden Zellisolationsmethoden gleich. Klinisch besonders wichtig ist die
Verbesserung des Rutherfordstadiums bei den Patienten mit Extremitätenerhalt von initial
4,9 auf 3,3 nach 6 Monaten (p = 0,0001). Die Dosis der Schmerzmedikation konnte um
etwa 60 % reduziert werden, und die standardisierte Gehstrecke verbesserte sich von
null auf 40 m. Es traten keine Therapie-assoziierten Todesfälle auf, drei schwere
unerwünschte Ereignisse periinterventionell heilten folgenlos ab. Spätkomplikationen
traten nicht auf. Schlussfolgerungen: Für einen Teil der austherapierten Patienten mit kritischer Extremitätenischämie
stellt die aKMT eine sichere und effektive Methode zum Extremitätenerhalt dar.
Abstract
Background: Bone marrow cell transplantation has been shown to induce angiogenesis and thus improve
ischaemic artery disease. This study evaluates the effects of intramuscular bone
marrow cell transplantation in patients with limb-threatening critical limb ischaemia
with a very high risk for major amputation. Methods and Results: After failed or impossible operative and / or interventional revascularisation and
after unsuccessful maximum conservative therapy, 51 patients with impending major
amputation due to severe critical limb ischaemia had autologous bone marrow cells
(BMC) transplanted into the ischaemic leg. Patients 1–12 received Ficoll-isolated
bone marrow mononuclear cells (total cell number 1.1 ± 1.1 × 109 ), patients 13–51 received point of care isolated bone marrow total nucleated cells
(3.0 ± 1.7 × 109 ). Limb salvage was 59 % at 6 months and 53 % at last follow-up (mean: 411 ± 261 days,
range: 175–1186 days). Perfusion measured with the ankle-brachial index (ABI) and
transcutaneous oxygen tension (tcpO2 ) at baseline and after 6 months increased in patients with consecutive limb salvage
(ABI 0.33 ± 0.18 to 0.46 ± 0.15, tcpO2 12 ± 12 to 25 ± 15 mmHg) and did not change in patients eventually undergoing major
amputation. No differences in clinical outcome between the isolation methods were
seen. Clinically most important, patients with limb salvage improved from a mean Rutherford
category of 4.9 at baseline to 3.3 at 6 months (p = 0.0001). Analgesics consumption
was reduced by 62 %. Total walking distance improved in non-amputees from zero to
40 metres. Three severe periprocedural adverse events resolved without sequelae,
and no unexpected long-term adverse events occurred. Conclusions: In no-option patients with end-stage critical limb ischaemia due to peripheral artery
disease, bone marrow cell transplantation is a safe procedure which can improve leg
perfusion sufficiently to reduce major amputations and permit durable limb salvage.
Schlüsselwörter
Angiogenese - periphere arterielle Verschlusserkrankung - Stammzelltherapie - Zelltransplantation
- biologische Therapie
Key words
angiogenesis - peripheral arterial occlusive disease - stem cell therapy - cell transplantation
- biological therapy
Literatur
1
Bhattacharya V, McSweeney P A, Shi Q et al.
Enhanced endothelialization and microvessel formation in polyester grafts seeded with
CD34+ bone marrow cells.
Blood.
2000;
95
581-585
2
Boyum A.
Isolation of lymphocytes, granulocytes and macrophages.
Scand J Immunol.
1976;
S5
9-15
3
Ceradini D J, Gurtner G C.
Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue.
Trends Cardiovasc Med.
2005;
15
57-63
4
Cetrulo C L, Knox K R, Brown D J et al.
Stem cells and distraction osteogenesis: endothelial progenitor cells home to the
ischemic generate in activation and consolidation.
Plastic and Recons Surg.
2005;
116
1053-1063
5
Conte M S, Bandyk D F, Clowes A W et al.
Risk factors, medical therapies and perioperative events in limb salvage surgery:
observations from the PREVENT III multicenter trial.
J Vasc Surg.
2005;
42
456-464
6
De Vivo S, Palmer-Kazen U, Kalin B et al.
Risk factors for poor collateral development in claudication.
Vasc Endovas Surg.
2005;
39
519-524
7
Dormandy J A, Rutherford R B.
Management of peripheral artery disease (PAD). TASC Working Group, TransAtlantic Inter-Society
Consensus (TASC).
J Vasc Surg.
2000;
31
s183-s185
8
Durdu S, Akar A R, Arat M et al.
Autologous bone marrow mononuclear cell implantation for patients with Rutherford
grade II–III Thromboangiitis obliterans.
J Vasc Surg.
2006;
44
732-739
9
Esato K, Hamano K, Li T S et al.
Neovascularization induced by autologous bone marrow cell implantation in peripheral
arterial disease.
Cell Transplant.
2002;
11
747-752
10
Faglia E, Clerici G, Caminiti M et al.
Predictive values of transcutaneous oxygen tension for above-the-ankle amputation
in diabetic patients with critical limb ischemia.
Eur J Vasc Endovasc Surg.
2007;
33
731-736
11
George J, Afek A, Abashidze A et al.
Transfer of endothelial progenitor and bone marrow cells influences atherosclerotic
plaque size and composition in apolipoprotein E knockout mice.
Arterioscler Thromb Vasc Biol.
2005;
25
2636-2641
12
Grundy S M, Pasternak R, Greenland P et al.
AHA / ACC scientific statement: Assessment of cardiovascular risk by use of multiple-risk-factor
assessment equations: a statement for healthcare professionals from the American Heart
Association and the American College of Cardiology.
J Am Coll Cardiol.
1999;
34
1348-1359
13
Hedera P, Bujdakova J, Trauber P et al.
Stroke risk factors and development of collateral flow in carotid occlusive disease.
Acta Neurol Scand.
1998;
98
182-186
14
Helisch A, Schaper W.
Arteriogenesis: The development and growth of collateral arteries.
Microcirculation.
2003;
10
83-97
15
Hermann P C, Huber S L, Herrler T et al.
Concentration of bone marrow total nucleated cells by a point-of-care device provides
a high yield and preserves their functional activity.
Cell Transplant.
2008;
16
1059-1069
16
Hirsch A T, Haskal Z J, Hertzer N R et al.
ACC/ A HA 2005 Practice guidelines for the management of patients with peripheral
arterial disease: a collaborative report.
Circulation.
2006;
113
e484-e487
17
Iba O, Matsubara H, Nozawa Y et al.
Angiogenesis by implantation of peripheral blood mononuclear cells and platelets into
ischemic limbs.
Circulation.
2002;
106
2019-2025
18
Ito W D, Arras M, Winkler B et al.
Monocyte chemotactic protein-1 increases collateral and peripheral conductance after
femoral artery occlusion.
Circ Res.
1997;
80
829-837
19
Jones W S, Annex B H.
Growth factors for therapeutic angiogenesis in peripheral arterial disease.
Curr Opin Cardiol.
2007;
22
458-463
20
Kamihata H, Matsubara H, Nishiue T et al.
Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral
perfusion and regional function via side supply of angioblasts, angiogenic ligands,
and cytokines.
Circulation.
2001;
104
1046-1052
21
Kilian J G, Keech A, Adams M R et al.
Coronary collateralization: determinants of adequate distal vessel filling after arterial
occlusion.
Coron Artery Dis.
2002;
13
55-159
22
Kinnaird T, Stabile E, Burnett M S et al.
Bone marrow–derived cells for enhancing collateral development: mechanisms, animal
data and initial clinical experiences.
Circ Res.
2004;
95
354-363
23
Leng G C, Lee A J, Fowkes F G et al.
Incidence, natural history and cardiovascular events in symptomatic and asymptomatic
peripheral arterial disease in the general population.
Int J Epidemiol.
1996;
25
1172-1181
24
Miao D, Murant S, Scutt N et al.
Megakaryocyte-bone marrow stromal cell aggregates demonstrate increased colony formation
and alkaline phosphatase expression in vitro.
Tissue Eng.
2004;
10
807-817
25
Mijamoto K, Nishigami K, Nagaya N et al.
Unblinded pilot study of autologous transplantation of bone marrow mononuclear cells
in patients with thromboangiitis obliterans.
Circulation.
2006;
114
2679-2684
26
Parmar K, Mauch P, Vergilio J et al.
Distribution of hematopoietic stem cells in the bone marrow according to regional
hypoxia.
Proc Natl Acad Sci.
2007;
104
5431-5436
27
Rutherford R B, Baker J D, Ernst C et al.
Recommended standards for reports dealing with lower extremity ischemia: revised version.
J Vasc Surg.
1997;
26
517-538
28
Saigawa T, Kato K, Ozawa T et al.
Clinical Application of bone marrow implantation in patients with arteriosclerosis
obliterans and the association between efficacy and the number of implanted cells.
Circ J.
2004;
68
1189-1193
29
Silvestre J-S, Gojova A, Brun V et al.
Transplantation of bone marrow-derived mononuclear cells in ischemic apolipoprotein
E–knockout mice accelerates atherosclerosis without altering plaque composition.
Circulation.
2003;
108
2839-2842
30
Silvestro A, Diehm N, Savolainen H et al.
Falsely high ankle-brachial index predicts major amputation in critical limb ischemia.
Vasc Med.
2006;
11
69-74
31
TASC (Transatlantic Society Consensus Group) .
Epidemiology, natural history, risk factors.
J Vasc Surg.
2000;
31 (suppl)
5-34
32
Tateishi-Yuyama E, Matsubara H, Murohara T et al.
Therapeutic angiogenesis for patients with limb ischemia by autologous transplantation
of bone-marrow cells: a pilot study and a randomized controlled trial.
Lancet.
2002;
360
427-435
33
Tepper O M, Capla J M, Galiano R D et al.
Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization
of circulating bone marrow-derived cells.
Blood.
2005;
105
1068-1077
34
Unthank J L, Sheridan K M, Dalsing M C.
Collateral growth in the peripheral circulation: a review.
Vasc Endovascular Surg.
2004;
38
291-313
35
Wahlberg E.
Angiogenesis and arteriogenesis in limb ischemia.
J Vasc Surg.
2003;
38
198-203
36
Wolfe J H, Wyatt M G.
Critical and subcritical ischaemia.
Eur J Vasc Endovasc Surg.
1997;
13
578-582
37
Wyss C R, Robertson C, Love S J et al.
Relationship between transcutaneous oxygen tension, ankle blood tension, and clinical
outcome of vascular surgery in diabetic and nondiabetic patients.
Surgery.
1987;
101
56-62
Dr. B. Amann
Franziskuskrankenhaus · Innere Abteilung
Berlin
Germany
Phone: 0 30 / 2 63 80
Fax: 0 30 / 26 38 36 09
Email: amann@franziskus-berlin.de